Towards a better understanding of the substrate specificity of the UDP-N-acetylglucosamine C4 epimerase WbpP.

نویسندگان

  • Melinda Demendi
  • Noboru Ishiyama
  • Joseph S Lam
  • Albert M Berghuis
  • Carole Creuzenet
چکیده

WbpP is the only genuine UDP-GlcNAc (UDP-N-acetylglucosamine) C4 epimerase for which both biochemical and structural data are available. This represents a golden opportunity to elucidate the molecular basis for its specificity for N-acetylated substrates. Based on the comparison of the substrate binding site of WbpP with that of other C4 epimerases that convert preferentially non-acetylated substrates, or that are able to convert both acetylated and non-acetylated substrates equally well, specific residues of WbpP were mutated, and the substrate specificity of the mutants was determined by direct biochemical assays and kinetic analyses. Most of the mutations tested were anticipated to trigger a significant switch in substrate specificity, mostly towards a preference for non-acetylated substrates. However, only one of the mutations (A209H) had the expected effect, and most others resulted in enhanced specificity of WbpP for N-acetylated substrates (Q201E, G102K, Q201E/G102K, A209N and S143A). One mutation (S144K) totally abolished enzyme activity. These data indicate that, although all residues targeted in the present study turned out to be important for catalysis, determinants of substrate specificity are not confined to the substrate-binding pocket and that longer range interactions are essential in allowing proper positioning of various ligands in the binding pocket. Hence prediction or engineering of substrate specificity solely based on sequence analysis, or even on modelling of the binding pocket, might lead to incorrect functional assignments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Gla(KP), a UDP-galacturonic acid C4-epimerase from Klebsiella pneumoniae with extended substrate specificity.

In Escherichia coli and Salmonella enterica, the core oligosaccharide backbone of the lipopolysaccharide is modified by phosphoryl groups. The negative charges provided by these residues are important in maintaining the barrier function of the outer membrane. In contrast, Klebsiella pneumoniae lacks phosphoryl groups in its core oligosaccharide but instead contains galacturonic acid residues th...

متن کامل

Flagellin glycosylation in Pseudomonas aeruginosa PAK requires the O-antigen biosynthesis enzyme WbpO.

Pseudomonas aeruginosa PAK (serotype O6) produces a single polar, glycosylated flagellum composed of a-type flagellin. To determine whether or not flagellin glycosylation in this serotype requires O-antigen genes, flagellin was isolated from the wild type, three O-antigen-deficient mutants wbpL, wbpO, and wbpP, and a wbpO mutant complemented with a plasmid containing a wild-type copy of wbpO. F...

متن کامل

Enzymatic synthesis of UDP-GlcNAc/UDP-GalNAc analogs using N-acetylglucosamine 1-phosphate uridyltransferase (GlmU).

Reports the generation of a library composed of UDP-GlcNAc/UDP-GalNAc and investigates the substrate specificity of Escherichia coli GlcNAc-1-P uridyltransferase GlmU.

متن کامل

Substrate Specificity Provides Insights into the Sugar Donor Recognition Mechanism of O-GlcNAc Transferase (OGT)

O-Linked β-N-acetylglucosaminyl transferase (OGT) plays an important role in the glycosylation of proteins, which is involved in various cellular events. In human, three isoforms of OGT (short OGT [sOGT]; mitochondrial OGT [mOGT]; and nucleocytoplasmic OGT [ncOGT]) share the same catalytic domain, implying that they might adopt a similar catalytic mechanism, including sugar donor recognition. I...

متن کامل

Biosynthesis of UDP-GlcNAc, UndPP-GlcNAc and UDP-GlcNAcA Involves Three Easily Distinguished 4-Epimerase Enzymes, Gne, Gnu and GnaB

We have undertaken an extensive survey of a group of epimerases originally named Gne, that were thought to be responsible for inter-conversion of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc). The analysis builds on recent work clarifying the specificity of some of these epimerases. We find three well defined clades responsible for inter-conversion of the gluco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 389 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2005